Synthesis of the first gold complex with a central µ₄-selenido ligand

Silvia Canales,^a Olga Crespo,^a M. Concepción Gimeno,^a Peter G. Jones^b and Antonio Laguna^{*a}

^a Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain. E-mail: alaguna@posta.unizar.es

^b Institut für Anorganische und Analytische Chemie der Technischen Universität, Postfach 3329, D-38023 Braunschweig, Germany

Received (in Basel, Switzerland) 15th December 1998, Accepted 4th March 1999

The first gold complex, $[Se(AuPPh_3)_4](CF_3SO_3)_2$, with a μ_4 -selenido ligand has been prepared; the crystal structure reveals a square pyramidal geometry with short gold–gold interactions.

The chemistry of complexes in which a main-group element is surrounded by several (phosphino)gold fragments was pioneered by Schmidbaur et al.,¹ who prepared fascinating hypercoordinated species of the type $[C(AuPR_3)_5]^+$, $[C(AuPR_3)_6]^{2+}$, $[N(AuPR_3)_5]^{2+},$ $[P(AuPR_3)_5]^{2+}$ and [P(AuPR₃)₆]^{2+,2-6} Many of these heteroatom-centered complexes are electron-deficient, and gold-gold interactions provide a significant contribution to their stability. Such interactions between formally closed-shell (d10) metal centres have been termed 'aurophilic attractions'1 and their origin is still a matter of controversy;⁷ Pyykkö et al. have presented theoretical evidence that these attractions are mainly correlation effects, strengthened by relativistic effects.8-10

Although the chemistry of the carbon-, nitrogen-, phosphorus- or arsenic-centered complexes was developed rapidly, the corresponding chalcogen-centered derivatives are still being studied. Recently the μ_4 -sulfido¹¹ or μ_4 -oxido¹² gold species were reported and shown to possess square pyramidal (apical sulfur) or tetrahedral geometry (central oxygen), respectively. Our previous work in the area of sulfur-centered complexes involved examples of gold(I) or gold(III) derivatives^{13–17} with a μ_3 - or μ_4 -sulfur ligand. Selenium-centered compounds are limited to the species $[Se(AuPPh_3)_2]$ and $[Se(AuPPh_3)_3]PF_6;^{18-20}$ here we report the synthesis and structural characterisation of the first μ_4 -selenido gold derivative.

The reaction of [Se(AuPPh₃)₂] with 2 equiv. of [Au(CF₃-SO₃)(PPh₃)] in dichloromethane affords a solution from which the colourless air- and moisture-stable solid [Se(AuPPh₃)₄]-

 $(CF_3SO_3)_2$ **1** can be isolated.[†] Complex **1** behaves as a 1:2 electrolyte in acetone solution. The ${}^{31}P{}^{1}H{}$ NMR spectrum shows only one signal corresponding to a unique phosphorus environment, shifted to high field in comparison with the starting material (δ 4) or the trinuclear compound [Se(AuPPh_3)_3](CF_3SO_3) (δ 1.3). In the liquid secondary positive-ion mass spectrum the monocationic peak [Se(AuPPh_3)_4]⁺ appears at m/z 1915 (35%).

Crystals of 1 suitable for X-ray structure analysis were obtained from dichloromethane-heptane.[‡] Compound 1 crystallises with two molecules of dichloromethane and is isostructural with the analogous sulfido compound [S(AuPPh₃)₄]- $(SO_3F_3)_2^{11}$ and its cation (Fig. 1) is also similar to that of [As(AuPPh₃)₄]BF₄.²¹ It possesses a tetragonal pyramidal framework, with the selenium atom occupying the apical position. The Au atoms are not exactly coplanar, but arranged in a flattened butterfly form with a hinge angle of 27° about the Au1...Au2 diagonal; their deviations from the best Au₄ plane are ± 0.27 Å, and that of the Se atom is 1.4 Å. The SeAu₄ core should be regarded as electron-deficient, considering the selenido ligand to serve as a six-electron donor. Therefore it still possesses a lone pair of electrons in the apical position, which means that further coordination of gold around the selenium atom is conceivable.

Complex 1 may be compared with the above-mentioned trinuclear selenide or the tetranuclear sulfide derivatives; observed differences are essentially as expected. The Au–Se–Au angles, which range from 70.45(4) to 72.59(4)° in 1, are smaller than those in [Se(AuPPh_3)_3]PF_6 [77.7(1)–80.0(1)°]¹⁹ or the corresponding S–Au–S angles in the isostructural [S(AuPPh_3)_4](CF_3SO_3)_2 [73.5(2)–75.6(2)°]. This difference may be associated with the presence of more diffuse 3p orbitals in the selenium derivative, allowing smaller angles, and/or a

Fig. 1 The structure of the cation of complex 1 in the crystal. Hydrogen atoms have been omitted for clarity; radii are arbitrary.

Fig. 2 Association of two cations of 1 in the crystal. The $\rm CF_3SO_3^-$ ions and the $\rm CH_2Cl_2$ molecules have been omitted.

greater electron repulsion of the lone pair of electrons. The Au-Se distances, 2.4654(13)–2.5347(14) Å, in 1 are longer than in $[Se(AuPPh_3)_3]^+$ [2.425(2)-2.451(2) Å] or (than Au-S) in $[S(AuPPh_3)_4]^{2+}$ [2.362(5)–2.429(5) Å]. Gold–gold distances between adjacent gold atoms in the pyramid base are short, 2.8959(8) to 2.9605(8) Å [the diagonal distances are 3.6 Å for $Au(1)\cdots Au(2)$ and 4.5 Å for $Au(3)\cdots Au(4)$]. These contacts are longer than those found in the tetranuclear sulfide derivative, 2.883(2)-2.938(2) Å. The Au-P bond lengths in 1 [2.265(3)-2.282(3) Å] lie in the expected range for twocoordinate gold(I) complexes and are very similar to those found in [Se(AuPPh₃)₃]PF₆ [2.257(6)-2.283(5) Å].

The cations of 1 are paired across symmetry centres to form loose dimers (Fig. 2), the shorter intermolecular distances being Se…Au3' 3.248 Å and Au3…Au3' 4.45 Å.

This work was supported by the DGES (PB-97-1010-C02-01), the Caja de Ahorros de la Inmaculada (CB4/98) and the Fonds der Chemischen Industrie.

Notes and references

† Preparation: [Au(CF₃SO₃)(PPh₃)] (0.2 mmol, 0.121 g) was added to a solution of [Se(AuPPh₃)₂] (0.1 mmol, 0.100 g) in dichloromethane (20 mL) and the mixture was stirred for 30 min and then the solvent removed under vacuum to ca. 5 mL. Addition of diethyl ether (10 mL) gave complex 1 as a white solid. Yield 81%. (Found: C, 39.45; H, 2.60; S, 2.70. Calc. for $C_{74}H_{60}Au_4F_6O_6P_4S_2Se; C, 39.0; H, 2.7; S, 2.8\%)$. $\Lambda_M = 165 \ \Omega^{-1} \ cm^2$ mol⁻¹. NMR: ³¹P{¹H} (121 MHz, CDCl₃, reference 85% H₃PO₄), δ 31.0 (s); ¹H (300 MHz, CDCl₃, reference SiMe₄), δ 7.3–7.5 (m, Ph). Mass spectrum (LSIMS+): m/z 1915 ([Se(AuPPh₃)₄]+, 35%).

Crystal data for $1.2CH_2Cl_2$: $C_{74}H_{60}Au_4F_6O_6P_4S_2Se.2CH_2Cl_2$, $M_r =$ 2383.90, monoclinic, space group $P2_1/n$, a = 16.410(2), b = 23.353(3), c= 20.352(2) Å, β = 91.593(8)°, V = 7796.4(17) Å³, Z = 4, D_c = 2.031 Mg m⁻³, μ (Mo-K α) = 8.31 mm⁻¹, F(000) = 4528, Siemens P4 diffractometer, λ (Mo-K α) = 0.71073 Å, T = -100 °C. A colourless tablet $0.20 \times 0.20 \times 0.15$ mm was used to collect 11096 intensities to $2\theta_{\text{max}}$ = 46°, of which after absorption corrections (transmission 0.685-0.873) 10820 were unique (R_{int} 0.0499). Scan type: ω . The structure was solved by direct methods and subjected to anisotropic refinement on F^2 (program SHELXL-97, G. M. Sheldrick, University of Göttingen). H atoms were included using a riding model. The final $wR(F^2)$ was 0.0536 for 10820 reflections, 928 parameters and 1206 restraints (to local ring symmetry and

light atom displacement factors), conventional R(F) = 0.0386, $S(F^2) =$ 0.743. max. $\Lambda \rho 0.84 \text{ e} \text{ Å}^{-3}$

CCDC 182/1190. See http://www.rsc.org/suppdata/cc/1999/679/ for crystallographic files in .cif format.

- 1 H. Schmidbaur, Gold Bull., 1990, 23, 11: Interdisc, Sci. Rev., 1992, 17. 213; Pure Appl. Chem., 1993, 65, 691; Chem. Soc. Rev., 1995, 24, 391.
- 2 F. Scherbaum, A. Grohmann, G. Müller and H. Schmidbaur, Angew. Chem., Int. Ed. Engl., 1989, 28, 463.
- 3 F. Scherbaum, A. Grohmann, B. Huber, C. Krüger and H. Schmidbaur, Angew. Chem., Int. Ed. Engl., 1988, 27, 1544.
- 4 A. Grohmann, J. Riede and H. Schmidbaur, Nature, 1990, 345, 140.
- 5 H. Schmidbaur, G. Weidenhiller and O. Steigelmann, Angew. Chem., Int. Ed. Engl., 1991, 30, 433; R. E. Bachman and H. Schmidbaur, Inorg. Chem., 1996, 35, 1399.
- 6 E. Zeller and H. Schmidbaur, J. Chem. Soc., Chem. Commun., 1993, 69
- 7 N. Kaltsoyannis, J. Chem. Soc., Dalton Trans., 1997, 1.
- 8 J. Li and P. Pyykkö, Chem. Phys. Lett., 1992, 197, 586.
- 9 P. Pyykkö, J. Li and N. Runeberg, Chem. Phys. Lett., 1994, 218, 133.
- P. Pyykkö, *Chem. Rev.*, 1997, **97**, 597.
 F. Canales, M. C. Gimeno, P. G. Jones and A. Laguna, *Angew. Chem.*, Int. Ed. Engl., 1994, 33, 769.
- 12 H. Schmidbaur, S. Hofreiter and M. Paul, Nature, 1995, 377, 503.
- 13 F. Canales, M. C. Gimeno, A. Laguna and M. D. Villacampa, Inorg. Chim. Acta, 1996, 244, 95.
- 14 F. Canales, M. C. Gimeno, A. Laguna and P. G. Jones, J. Am. Chem. Soc., 1996, 118, 4839.
- 15 F. Canales, M. C. Gimeno, A. Laguna and P. G. Jones, Organometallics, 1996, 15, 3412.
- 16 M. J. Calhorda, F. Canales, M. C. Gimeno, J. Jiménez, P. G. Jones, A. Laguna and L. F. Veiros, Organometallics, 1997, 17, 3837.
- 17 F. Canales, S. Canales, O. Crespo, M. C. Gimeno, P. G. Jones and A. Laguna, Organometallics, 1998, 17, 1617.
- 18 H. Schmidbaur, F. Franke and J. Eberlein, Chem. Z., 1975, 99, 91.
- 19 C. Lensch, P. G. Jones and G. M. Sheldrick, Z. Naturforsch., Teil B, 1982 37 944
- 20 P. G. Jones and C. Thöne, Chem. Ber., 1991, 124, 2725.
- 21 E. Zeller, H. Beruda, A. Kolb, P. Bissinger and H. Schmidbaur, Nature, 1991, 352, 141.

Communication 8/097391